経済学書専門出版 エコノミスト社
Top書籍情報計量経済・統計ソフトウェアRATSForecasting
ファイナンス大系
リアルオプション
Excelとその応用
統計学大系
経済学大系
e-ビジネス
計量経済学
ゲーム理論
経済数学
環境問題・環境経済学
人口学講座
ナレッジマネジメント
ビジネス書
NLP理論
複雑系経済学
経営学・商学大系
マーケティング
心理学・行動科学大系
金融工学・数理ファイナンス
マクロ経済学
法情報学
企業法学講座
経営工学大系
計量経済・統計ソフトウェア
オペレーションズ・リサーチ
会計学・簿記・税務
楽しい数学
時系列分析ソフトウェア
RATS

3-7. RATS Basics: Forecasting


Another common task is forecasting data. RATS can can forecast linear and non-linear equations, systems of interdependent equations, and full simultaneous systems of equations. Most forecasting is done using the FORECAST instruction. We'll quickly cover a couple of examples here.

Our Example Program
Suppose we have data for AVGPRICES for the years 1942 through 1945, and we want to see if we can use this data to accurately forecast food production over that period. We'll try a model which regresses food production on a constant, lagged food production, and current average prices.

First, we estimate our regression, using the DEFINE option to create an equation called PRODEQ. The equation stores the names of the variables and the estimated coefficients, which FORECAST will use to compute the forecasts. Here's our regression:

LINREG(DEFINE=PRODEQ) FOODPROD
# CONSTANT FOODPROD{1} AVGPRICES

Now we need to input our average prices data for 1942 through 1945. Rather than reading the data from a file, we'll use the UNIT=INPUT option on DATA, which allows us to type in the data directly:

DATA(UNIT=INPUT) 1942:1 1945:1 AVGPRICES
112.3 112.8 113.9 119.3



Now we're ready to compute forecasts. The following instruction forecasts one equation (PRODEQ) for four time periods, starting with 1942:1. The forecasts are stored in a series called FOODPROD_FORCST:

FORECAST 1 4 1942:1
# PRODEQ FOODPROD_FORCST

Now we'll use PRINT to display the actual and forecasted values, along with AVGPRICES. The NA's in the output indicate data that is Not Available. For example FOODPROD_FORCST has only been defined from 1942 on, so earlier entries are shown as NA:


PRINT / AVGPRICES FOODPROD FOODPROD_FORCST


ENTRY AVGPRICES FOODPROD FOODPROD_FORCST
1922:01 NA 108.50000000000 NA
1923:01 99.10000000000 110.10000000000 NA
1924:01 99.00000000000 110.40000000000 NA
1925:01 104.85000000000 104.30000000000 NA
1926:01 109.50000000000 107.20000000000 NA
1927:01 106.90000000000 105.80000000000 NA
1928:01 107.70000000000 107.80000000000 NA
1929:01 109.25000000000 103.40000000000 NA
1930:01 104.65000000000 102.70000000000 NA
1931:01 90.80000000000 104.10000000000 NA
1932:01 74.80000000000 99.20000000000 NA
1933:01 69.75000000000 99.70000000000 NA
1934:01 76.15000000000 102.00000000000 NA
1935:01 91.85000000000 94.30000000000 NA
1936:01 103.65000000000 97.70000000000 NA
1937:01 107.75000000000 101.10000000000 NA
1938:01 101.50000000000 102.30000000000 NA
1939:01 90.90000000000 104.40000000000 NA
1940:01 91.15000000000 108.50000000000 NA
1941:01 99.80000000000 111.30000000000 NA
1942:01 112.30000000000 NA 109.93406376720
1943:01 112.80000000000 NA 109.02869257276
1944:01 113.90000000000 NA 108.47044077353
1945:01 119.30000000000 NA 108.38330631039


Estimating and Forecasting ARIMA and VAR Models
This estimates an ARIMA model using BOXJENK, and computes forecasts from 1991:5 through 1993:4 (two years of monthly data):

BOXJENK(DEFINE=BJEQ,SDIFFS=1,AR=2,SMA=1) LDEUIP / RESIDS
FORECAST 1 24 1991:5
# BJEQ IPFORE

The following code estimates a four-variable, 13 lag, vector autoregression (VAR) model and forecasts twelve months of data. Here, equations are referenced by number, rather than by name. Notice that RATS includes several instructions which simplify the estimation of VAR models. We use the PRINT option on FORECAST to have RATS display the forecasts as they are generated.

SYSTEM 1 TO 4
VARIABLES CPR M1 PPI IP
LAGS 1 TO 13
DETERMINISTIC CONSTANT
END(SYSTEM)
ESTIMATE
FORECAST(PRINT) 4 12 92:1
# 1 F_CPR
# 2 F_M1
# 3 F_PPI
# 4 F_IP


Forecasting Diagnostics
RATS provides a number of tools for examining the performance of forecasting models. For example, you can use the SET instruction for simple mean squared error calculations, or the THEIL instruction to compute a variety of statistics, including root mean square errors and Theil U statistics. There are also two ways to calculate the standard errors of forecasts.


←3-6. Hypothesis Testing →3-8. RATS Basics: Functions


←RATSのTopページに戻る