| 
							
								
							 | 
							 | 
							
								
									
										  | 
									 
									
										 | 
									 
									
										 | 
									 
									
										| LIMDEP V8.0 | 
									 
									
										
											 
										 | 
									 
									
										 LIMDEP Windows 95/NT版 
											 スペック 
											 LIMDEP7.0の機能と特徴 
											 NLOGIT3.0 
											 Applications 
											 
											 LIMDEP V8.0のTopに戻る 
											 
										 | 
									 
									
										Applications 
													LIMDEPの応用分野 
													 
											 
											A PROGRAM TO FIT A PROBIT MODEL 
											When a model is not contained in LIMDEP's menu of procedures, an alternative method is to write the iterative program using LIMDEP' s programming tools. The following general procedure would estimate the parameters of any specified probit model:  
											 
											
												
													proc=probit(x,y) 
														calc	; k= col(x) 
														matrix	; a = [k_0] 
														create	; z = 2 * y-1 
														label	; 100 
														create	; vi = a'x 
															; li = log(phi(z*vi)) 
															; gi = z*n01(z*vi)/phi(z*vi) 
															; hi = gi*(vi+gi) 
														calc	; l = sum(li) 
														matrix	; g = x'gi 
															; h = < x'[hi]x > 
															; e = h * g 
														calc	; list ; converge = e'g 
														matrix	; a = a + e 
														goto	; 100 ; converge > .0001 
														matrix	; stat (a,h) 
														endproc 
														namelist; program = one,gpa,tuce,psi 
														execute	; proc=probit(grade,program) 
													 | 
														$ 
														$ number of variables 
														$ starting values 
														$ will be convenient 
														$ beginning of iteration 
														? argument 
														? log-li(i) 
														? 1st derivative 
														$ 2nd derivative 
														$ log-l 
														? gradient  
														? inverse of hessian 
														$ change vector 
														$ convergence rule 
														$ update for iteration 
														$ iterate or exit 
														$ report results 
														$ procedure now defined 
														$ variables on the rhs 
														$ execute the procedure 
													 | 
												 
											 
											 
											 
											MARGINAL EFFECTS IN A BOX-COX MODEL  
											This application computes the impact of different functional forms on a marginal effect in the probit model. In the probit model, the income variable is transformed by different values for the Box-Cox transformation. The MLE of the marginal effect of income on the probability of loan default is plotted against lambda. (Greene and Seaks, Applied Economics, 1994.)  
											 
											
												
													read	; data set is entered ... $ 
														 create	; lincome = 0 $ (place holder) 
														 namelist; x=one, family, grad, lincome$ 
														 matrix	; { i = 0 }; lambda=[20_0]; effects=[20_0]$ 
														 proc 
														 create	; lincome = income @ 1$ 
														 probit	; lhs=default; rhs=x$ 
														 matrix	; xbar = mean (x) $ 
														 calc	; i=i+l; m_e = b(4) * nOl (xbar'b) 
														                    *xbr(income)@(l-1) $ 
														 matrix	; lambda (i) = I; effect(i) = m_e $ 
														 endproc 
														 execute ; 1 = -.50, 1.41, .10$ 
														 mplot	 ; lhs = lambda; rhs = effect; fill; grid $ 
													 | 
												 
											 
											 
											 
											COMPUTING BINARY CHOICE MODELS 
											The following obtains parameters for probit and logit models, displays marginal effects for the models, then produces an output table that allows easy comparison of the two models:  
											
												
													probit	; lhs = grade; marginal effects 
														  	; rhs = one,gpa,tuce,psi $ 
														logit	; lhs = grade; marginal effects 
															; rhs = one,gpa,tuce,psi $ 
														review 
													 | 
												 
											 
											
												
													 
														Partial derivatives of E[y] = F[*] with respect to the 
														vector of characteristics.  They are computed at the 
														means of the xs. Observations used for means are all obs. 
														 
														Variable    Coefficent     Standard Error     z = b/s.e.      p[|Z| > z]  
														constant  -2.4447   0.75885   -3.222    0.00127 
														gpa     0.53335  0.232246   2.294    0.02177 
														tuce   0.16969E-01 0.27120E-01  0.626    0.53150 
														psi     0.46791   0.184764   2.494    0.01265 | 
												 
											 
											
												
													Binary Choice Models 
																	 
															   	     Probit Model           Logit Model	 
														 
														Variable  Parameter  t-ratio  Parameter  t-ratio 
														constant  -7.4522   -2.93  -13.0213   -2.64 
														gpa     1.6258   2.34   2.8261    2.24 
														tuce     0.0517   0.62   0.0952   0.67 
														psi     1.4263   2.40   2.3787    2.23 
														log-l    -12.8188       -12.8896   
														log-l(0)   -20.5917       -20.5917  
													 | 
												 
											 
										 | 
									 
									
										| LIMDEP V8.0のTopに戻る | 
									 
								 
							 | 
							 |