経済学書専門出版 エコノミスト社
Top書籍情報計量経済・統計ソフトウェアLIMDEP V8.0NLOGIT3.0
ファイナンス大系
リアルオプション
Excelとその応用
統計学大系
経済学大系
e-ビジネス
計量経済学
ゲーム理論
経済数学
環境問題・環境経済学
人口学講座
ナレッジマネジメント
ビジネス書
NLP理論
複雑系経済学
経営学・商学大系
マーケティング
心理学・行動科学大系
金融工学・数理ファイナンス
マクロ経済学
法情報学
企業法学講座
経営工学大系
計量経済・統計ソフトウェア
オペレーションズ・リサーチ
会計学・簿記・税務
楽しい数学
LIMDEP V8.0

LIMDEP Windows 95/NT版
スペック
LIMDEP7.0の機能と特徴
NLOGIT3.0
Applications

LIMDEP V8.0のTopに戻る

Applications
LIMDEPの応用分野


A PROGRAM TO FIT A PROBIT MODEL
When a model is not contained in LIMDEP's menu of procedures, an alternative method is to write the iterative program using LIMDEP' s programming tools. The following general procedure would estimate the parameters of any specified probit model:

proc=probit(x,y)
calc ; k= col(x)
matrix ; a = [k_0]
create ; z = 2 * y-1
label ; 100
create ; vi = a'x
; li = log(phi(z*vi))
; gi = z*n01(z*vi)/phi(z*vi)
; hi = gi*(vi+gi)
calc ; l = sum(li)
matrix ; g = x'gi
; h = < x'[hi]x >
; e = h * g
calc ; list ; converge = e'g
matrix ; a = a + e
goto ; 100 ; converge > .0001
matrix ; stat (a,h)
endproc
namelist; program = one,gpa,tuce,psi
execute ; proc=probit(grade,program)
$
$ number of variables
$ starting values
$ will be convenient
$ beginning of iteration
? argument
? log-li(i)
? 1st derivative
$ 2nd derivative
$ log-l
? gradient
? inverse of hessian
$ change vector
$ convergence rule
$ update for iteration
$ iterate or exit
$ report results
$ procedure now defined
$ variables on the rhs
$ execute the procedure


MARGINAL EFFECTS IN A BOX-COX MODEL
This application computes the impact of different functional forms on a marginal effect in the probit model. In the probit model, the income variable is transformed by different values for the Box-Cox transformation. The MLE of the marginal effect of income on the probability of loan default is plotted against lambda. (Greene and Seaks, Applied Economics, 1994.)

read ; data set is entered ... $
create ; lincome = 0 $ (place holder)
namelist; x=one, family, grad, lincome$
matrix ; { i = 0 }; lambda=[20_0]; effects=[20_0]$
proc
create ; lincome = income @ 1$
probit ; lhs=default; rhs=x$
matrix ; xbar = mean (x) $
calc ; i=i+l; m_e = b(4) * nOl (xbar'b)
*xbr(income)@(l-1) $
matrix ; lambda (i) = I; effect(i) = m_e $
endproc
execute ; 1 = -.50, 1.41, .10$
mplot ; lhs = lambda; rhs = effect; fill; grid $


COMPUTING BINARY CHOICE MODELS
The following obtains parameters for probit and logit models, displays marginal effects for the models, then produces an output table that allows easy comparison of the two models:
probit ; lhs = grade; marginal effects
; rhs = one,gpa,tuce,psi $
logit ; lhs = grade; marginal effects
; rhs = one,gpa,tuce,psi $
review

Partial derivatives of E[y] = F[*] with respect to the
vector of characteristics. They are computed at the
means of the xs. Observations used for means are all obs.

Variable  Coefficent  Standard Error   z = b/s.e.   p[|Z| > z]
constant  -2.4447   0.75885   -3.222    0.00127
gpa     0.53335  0.232246   2.294    0.02177
tuce   0.16969E-01 0.27120E-01  0.626    0.53150
psi     0.46791   0.184764   2.494    0.01265
Binary Choice Models

Probit Model Logit Model

Variable  Parameter  t-ratio  Parameter  t-ratio
constant  -7.4522   -2.93  -13.0213   -2.64
gpa     1.6258   2.34   2.8261    2.24
tuce     0.0517   0.62   0.0952   0.67
psi     1.4263   2.40   2.3787    2.23
log-l    -12.8188       -12.8896
log-l(0)   -20.5917       -20.5917
LIMDEP V8.0のTopに戻る